CSCI 7000 Fall 2023: Problems on Generating Functions

Joshua A. Grochow

September 12, 2023

To work on during class:

From last week, recall we had

$$
\mathcal{F}_{n}:=\left\{x \in\{0,1\}^{n} \mid \text { all } 0 \text { 's come in consecutive pairs } 00\right\},
$$

with $\left|\mathcal{F}_{n}\right|=F_{n}$, the n-th Fibonacci number (starting with $F_{0}=F_{1}=1$). This has generating function $F(x)=1 /\left(1-x-x^{2}\right)$. (Beware - some authors start with $F_{0}=0, F_{1}=1$!)

Then we defined a related sequence of sets:
$\mathcal{G}_{n}:=\left\{x \in\{0,1,2\}^{n} \mid\right.$ all 0 s come in consecutive pairs 00 , and there is exactly one 2$\}$.

1. Let $\mathcal{F}=\bigcup_{n \geq 0} \mathcal{F}_{n}$ be the set of all strings (of any length) where all 0 s come in consecutive pairs.
(a) Give a bijection between \mathcal{F} and $\{0,1\}^{*}$ (the set of all binary strings).
(b) Use this bijection to motivate a quick re-derivation of the generating function for the Fibonacci series, without using the Fibonacci recurrence. Hint: Start with a two-variable generating function

$$
\sum_{n \geq 0, k \geq 0} x^{n-k} y^{k} \cdot(\# \text { strings with exactly } k \text { zeros and } n-k \text { ones). }
$$

2. Use the product formula for generating functions, and the known generating function for the Fibonacci series, find the generating function for the series $G_{n}=\left|\mathcal{G}_{n}\right|$.
3. In class we derived the recurrence

$$
G_{n}=G_{n-1}+G_{n-2}+F_{n-1} .
$$

Use this to find the generating function for the sequence G_{n}.
4. Let $f(n, k)$ denote the number of lists $\left[x_{1}, \ldots, x_{k}\right]$, consisting of k (not necessarily distinct) non-negative integers, such that $\sum_{i=1}^{k} x_{i}=n$. Find a simple closed-form formula for $f(n, k)$ (hint: it will be in terms of binomial coefficients) using generating functions.
5. (a) Use operations on generating functions to prove that the Fibonacci numbers satisfy $F_{0}+F_{1}+\cdots+F_{n}=F_{n+2}-1$ for all $n \geq 0$.
(b) Now give a bijective proof of that fact.

To work on outside of class

1. (May be harder!) Let $H_{n, k}$ be the number of strings in \mathcal{F}_{n} with exactly k ones. In class we derived the recurrence

$$
H_{n, k}=H_{n-1, k-1}+H_{n-2, k} .
$$

Using this, find the two-variable generating function for the array of numbers $H_{n, k}$. Then use operations on generating functions we learned about in class to derive the generating function for $\left|\mathcal{G}_{n}\right|$.

